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I. INTRODUCTION

Stephen Feldberg's finite difference methods [1] for digital

simulation has been the primary method of approximating the solutions

to second order partial differential equations found in electro-

chemistry. The intensity of usage of digital simulations by thehe

finite difference methods has increased markedly, and it has become

apparent in some cases that there is a need for faster techniques

capable of delivering accurate results as well as being able to

simulate extremely "fast" systems more efficiently. As a result,

several groups [2] have made significant contributions toward im-

proving finite difference methods for electrochemical problems.

But instability and lengthy computational times under certain con-

ditions still manifests itself as a primary drawback.

The methods described in this chapter provide some of the

answers to these problems. The mathematics involvd in these

polynomial approximation methods are only slightly more com-

plicated than the finite difference equations, but the accuracy of

the results, stability limits, and speed of execution of the com-

puter programs make their use well worth the small extra effort

needed to implement them.

It is not intended to imply that the methods described are

the "ultimate" electrochemical differential equation simulations.

The rapid convergence of low approximation order solutions to the

exact solutions has been proven mathematically for many types of

problems, but certainly not all. However, it is this type of con-

vergence in a method that urges us to seek general theorems that

may lead to faster, even more effective methods of approximation.
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The interest in the use of new highly efficient numerical

methods for the solution of complex mathematical problems is further

evidenced by the overwhelming number of publications on the sub-

ject that have appeared in the recent mathematics and engineering

literature [3]. The success of these techniques may be attributed

to: a) the impressive degree of accuracy that is obtainable;

b) the fact that many of the methods may be constructed
from only a few basic principles;

c) the consideration that many methods are "modular" in
construction, and the "modules" are available as highly
efficient algorithms amenable to digital computer
implementation.

Harrison and Gray [4] used Chebyshev polynomial approximations

some years ago for an electrochemical simulation. More recently,

Whiting and Carr [5] introduced an advanced and highly efficient

method (orthogonal collocation) into the simulation of electrode

reactions. Their work outlines the theory of orthogonal colloc-

ation and its application to several electrochemical mechanisms

occurring during chronoamperometric experiments. Bewick, Mellor,

and Pons [6] applied the technique to some actual complicated

systems and extended the method to simulate modulated specular

reflectance transient responses of the intermediates formed during

the reaction. More recently, Rieker and Speiser [7] have used

orthogonal collocation to simulate a full spectrum of cyclic volt-

ammetric responses.

The methods that will be discussed in this chapter-are

suitable in nature to the solution of a great many types of dif-

ferential equations. As Whiting and Carr [5] pointed out, it is

usually just a matter of changing a few steps in the program to

switch from one problem to one of a completely different nature,
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e.g., the chronoamperometric response of an e.c.e. mechanism in

electrochemistry to a dynamic model of a differential scanning

calorimeter. With this in mind, it is also important to ,:emember

that even highly efficient methods may be improved by using cer-

tain techniques to treat peculiar situations that arise in specific

problems. I have, however, tried to keep the methods as general

as possible.

Special attention has been given to the integration of

"stiff" differential equations, since it is with this type that

electrochemists are most often confronted in their routine work.

Equations of this type are of considerable interest in engineering

research presently, and new, more efficient methods are being

developed rapidly.

Some simple approximation methods are also described that

may be solved on a calculator. These methods are of acceptable

accuracy in many types of experiments, and some are of !ccuracy

approaching the more sophisticated methods.

Il. THE METHOD OF WEIGHTED RESIDUALS

A. Introduction

Considez the boundary value problem

t xx ( 1)

where

60(x,t)= - t( 2)



and

-
2  (x't) ( 3)xx a x2

We assume that 0 is defined and continuous in the domain W. We

also define 00 (x) = O(x,O) as the initial condition of 0, and

0z(x,t) are the values of 0 at the boundaries Z of the domain.

We choose an approximate solution, OA to the problem in the form:

n
0 A =  oZ=0(xt)+OZ=L(xt)+Z ai(t)0i(x) 4)

i=l

where OA is the approximate solution, OZ=0 and OZ=L are the

solutions at the boundaries 0 and L, and the 0i are the basis

functions (which may be polynomial, trigonometric, or other types).

Various techniques would prescribe whether the basis functions

satisfy the differential equation, the boundary conditions, or

both.

The residuaZ of equation (1) is defined as

R() =Y -0 ( 5)

so that if 0A is an accurate approximation to the actual 0, then

R(OA) will equal zero. It is the purpose in the weighted residual

methods to pick the ai(t) such that the residual tends to zero.

The ai(t) are chosen by specifying that the integral of the re-

sidual times some weighting function w is equal to zero. Thub it

is the "-aighted average" of the residual that is specified to be
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zero over the whole domain:

wjR(0A)dx B 0 ( 6)

The choice of the weighting function w. determines which method

of weighted residuals is being utilized. Some of the more pop-

ular methods are listed here [8].

1. Intecral Method (method of moments, 1st order subdomain)

The w. are chosen to be x3 , j=0,1,2,3, ----- So for the first

order approximation problem, xJ=l, the integral

fR(0A)dx = 0 ( 7)
W

is evaluated. The result, for time dependent ai, is a first

order differential equation in 0A*

2. Galerkin Method

In this, a most widely used and highly accurate method,

the basis functions for the OA are chosen as the weighting

function, i.e.,

w. = 0.x) ( 8)

Because of this choice, and the completeness of the basis set,

the method can be made exact as j * .

3. Variational Methods

Using the calculus of variations, certain problems may be

approximated similar to weighted residual methods. The

... . iw I i I l i . I l i lI I I w I I I w.mil i I I w w m H I l i. .. .. .
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solutions, when accessible, compare in accuracy to the Galerkin

method. However, the method is not directly applicable to all

general second order partial differential equations, and is

mentioned here for reference only.

4. Least Squares Method

Here, the weighting functions are chosen to be

R (A) 9)

j 6az (t)

The a. (t) are provided by n equations from the set of equations
1

6R(O A
Q 2R(A) A dx = 0, i = 1,2,---n (10)6i (t) A6 a it

for a one dimensional situation.

5. General Collocation

The weighting functions are given by

w= 6(x-xj) , (11)

6 being the Dirac delta function, which is defined as follows:

6(r) = 0 , r/O
( 12) +

ff(r)6(r)dT = f(0)

Note that if f(r) = 1, f6(r)dT = 1. Also, it is true that 6(r)

is only defined during an integration.
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It is then immediately obvious that this choice of we-

ighting function leads to

0 = fw R(0A)dx = f6(x-xj )R(A)dX = R(O ( 13)
W d

so that the residual is given in terms of a fixed set of x.J

only. The x. are any set of points in the integration interval.J

6. Orthogonal Collocation Method

This highly accurate method, which is used in this work

for accurate simulations of complicated systems, is the same

as method (5) above with the collocation points x. chosen asJ

the real roots of an orthogonal polynomial.

7. Subdomain Method

The integration domain W is subdivided into subdomains W/n,

n=1,2,3, ----. The weighting functions are equal to 1 when x is

in a particular subdomain, and equal to zero when it is not.

If the number of subdomains is increased, the residual ap-

proximates zero closely in more regions, and eventually ap-

proximates zero over the entire region.

In the following section, a very useful approximation is made

to the general diffusion problem. Several weighted residual me-

thods are then used to provide the concentration profiles, and a

comparison is made of the results.

B. The Diffusion Boundary Layer Approximation

As an example of one method that may be used on a hand calc-

ulator, we develop an approximation for the EC mechanism using a

boundary layer approach. We have:
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ne- k
A B -- C (14)

at a planar electrode under conditions of semi infinite linear di-

ffusion, ard the conditions:

(A] x,0 [Ai.cT = (Ao] (15)

[B]x,o (CIx,0  [A]O,T (B].,T = [C]O,T = 0 (16)

(d(A] (I 7d Xx=0

This problem is one of a potential step applied to the elec-

trode of such magnitude that the surface concentration of species

A is reduced immediately to zero. We wish to determine the con-

centration profile of species B as a function of time. The dif-

ferential equation to be solved is

SB2[B k[] (18)
ST B 6X2

Assume that L is some distance from the elec'.rode such that at the

end of the experiment, there has been no diffusion of any species

to L. In this case, we define the dimensionless parameters

TDB X kL2  (B]
t = L2 xL D B cB= C AI (19)

Inserting these parameters into (18), we obtain

26cCB S c
- = 6 B cc ( 20)

6t -2 •B6x
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The initial and boundary conditions are also changed to

cB(XO) = cB(llt) = 0 (21)

cA(,Ot) = 1 ( 22)

Now consider the diffusion boundary layer. When the potential

step is applied, B immediately starts diffusing into the solution

toward the cell wall which we assume to be no closer than L. As-

sume that the concentration of B ahead of this boundary, whose

distance from the electrode we shall call b, is equal to zero. We

also assume that behind the boundary, B is represented by a con-

tinuous gradient. We note that b is a function of t only. We

may, under this supposition, treat distance from the electrode

surface as some fraction of the parameter b(t). We now define a

dimensionless distance transformation, which is simply a fraction

of the diffusion boundary thickness:

x 23)
1 = b(t)23

Since the concentration is to be expressed as a function of distance

from the electrode surface, we have

c = cBJ) = c B  (24)

Note that we have combined distance and time into one new in-

dependent variable p.
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From the nature of the model, the following general boundary

conditions must be imposed:

(1) The dimensionless concentration at the electrode surface
is 1, i.e.

cB = f(j)=f(0)=l (25)

(2) At the edge of the moving boundary (p=l), the concentra-
tion is 0, i.e.

cB = f(I)=f(l)=0 (26)

(3) There is no flux of material across the moving boundary, i.e.

f'(l)=0 (27)

(4) The moving boundary initially is located at the electrode
surface, i.e.

b(O)=O (28)

Now we rewrite the differential equation in terms of the new

single independent variable p.

x _

c f(p)=f(b-t) (29)

B __ _ _ _ _ __ _ _ __ _ _ __ b t
x xc B  6f(j) f (b--) 6 f (-) ( )

6t 6t 6t (_t) 6t

- f,( x x 1 db)
b(t) b(t) b(t) dt

= f'( ) b (t)-ib' (t) (30)
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6 6x 6(--I) 6x f  b (-t) - f (10b-(t) (31)

62cB  6(f' b (7t)b (t) 6 --t 1 .,, (b )1 -2
( Mx b ft 0.. (=t f'(J)b(t) (32)

The differential equation (20) now reads:

-f'(p) P b(t)' b'(t) - b'2 f"(0) - Of(P) (33)

The residual of (33) is simply the left hand side minus the right

hand side. Now we choose an approximating function for f(p). The

simnlist poZynomiaZ approximation that satisfies all of the boundary

conditions (25-28) is:

f - (-)2 a l-2p +iP2  (34)

We have:

(p)- 2V - 2 (35)

and

f"() - 2 (36)

So:

RE -I (211-2)b'(t)b(t) "1 - 2b(t) "2 + 0(1-2p+p 2  (37)

or b(t)2R - (2p-2i 2 )b'(t)b(t) - 2 + b 2 (t) (l-2ui4 2  (38)

Now we shall apply various MWR to solve for the moving boundary

position b. Insertion of this value into equation (34) will give



12

the concentration profiles for species B. The results for each

method are then compared to the exact solution.

Method (1): The integral method (w ml)

For the highest accuracy, we demand that the residual be equal

to zero in the weighted average sense:

b2 P wj~Rdp - 'PEd - 0 (39

i.e.

(2p-2p 2 )b ' (t )b (t ) - 2 + Sb(t)2 (-2p+p 2 )dp 0 (40)
0

f2 d b'(t)b(t) b 22 40 (41)
3

The first order differential equation is solved for b(t):

b(t)b'(t) - 6 + b 2(t) - 0 (42)

and since b'(t) dbt) p we have

b(t)db(t) -dt (43)

(Ob -_6)

which is integrated to give

b(t) [6 (-)] 1/2 (44)

This approximation describes the movement of the diffusion boundary

layer in time.

The approximate concentration change with distance and time is

obtained by substitution of (44) into (34):
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- f~') - (-u) 2 - ~b(t) 6 *(l-exp (-20 t)) /) (5

The solution is valid until the moving diffusion boundary layer

reaches the outer boundary limit b=l:

6((-exp(-2$t)11/2 (46)

or until

t 1_6-) (47)2$ 6

Method (2): The method of moments with 4-2.

Using j=2 (a second order approximation),

w2 (1) V -1. M (48)

The residual integral is then

I W2R dV a IV)REdI

- I1)d(22 2)b'(t)b(t) - 2 4 0b 2(t)(-2+u 2)jdp - 0 (49)

The solution is

f'w REdJ tlb'(t)b(t) I 1 b +b 2(t)( 1) 0 (50)

The differential equation is solved easily to give the new

approximation for b(t)



14

[ib (t) [I1 (-exp(-Bt)]1/2 (51)

and substitution into (34) gives the new approximate concentration

profile:

c B-f(Ui) - 1 2 l ~ y 22 (52)

Method (33): Single point collocation, w (i) - (i-1j), i-1,2,---N

where the V are N points in the integral (Ob(t)).

Let us arbitrarily pick 1/2 as a collocation point because of

symmetry. Thus we have from (38):

b 2 RE (1-1/2)b(t)b' (t)-2 + Ob2 (t)(1/4) - 0 (53)

or

bt)bl(t)- 2 + b 2 (t. 0 (54)
2 4

This equation yields

b(t) - [!(l-expC-Ot)] 1/2 (55)

and thus

CB (UC~) 1-,2 (56)

Method (3b): Other collocation points might have been chosen. As

an example, if we had chosen Ua = 1/3 (a highly effective choice in

Galerkin collocation methods), we would have the result:

mm •m • • mm mmmmm ms • a~ammm • mmm• mmnimmm •mm m ms• mmm m mm ramedms~a S4



[ 1/2cr f fU) I - x 12 15

CB - Ii ~1/21(57)
7,(1-exp (-2 0t) I

2
Method (4): The Galerkin Methc.- w.(p) - f (P) m l-2v+ v

$/wP.jdvi$f (1-2j -p) (2)-2v 2 )b(t)b' (t)-2+Bb2 It) (1-2y+P2 )]du=0 (58)

Integration and solution of the resulting differential equation

yields

cB- fu) 1- x (59)

-(-exp(-48t) 
1/2]

Method (5): Integral method, j=l, but choose as an approximation

polynomial the function

- f(j) - 1-sin q (60)

instead of equation (34).

Thus

f Cos 7and f"(0 - sin w(61)

so that since

RE- -f'(v)b(t)bl (t)-f"()b-2 (t) + f(N) (62)

we have

2A

R (-ico-) b (t) b (t) -(w-sinyiib 2 (t) + 0(1-sinjz') (63)
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and

w Il jr (4!os%,)b~~b- (t) sini)b (t) + 0
jV 2 2-

s- sin 0 (64)

Integration and solution of the resulting differential equation leads to

b(t) .(-exp(-20t) 1 (65)
j b~~tl L~0.3634 e(-x 'Bl15

and since -- -)'
b t

C - sin L 11.57 4  l-exp(-20t))] 1/2 (66)

Exact solution:

The exact solution to the catalytic boundary value problem has been

given by Joslin and Pletcher (9) as

[B] a .Lexp(-XJ!)erfc(- -kT) + I.xp(X )erfc(-~ +J5T) (67)2 F r2fDT 2 IED,2

For comparison of the exact solution with the approximations, we

choose k - 100 s1 , T - 10 - 2 s, D = 10 - 5 cm2s-1 and [A°] - 10 - 3 moles i - 1.

We find that if we choose, under these conditions, the boundary

X-L X 3 x 10-3 cm, that there are no diffusion effects at the boundary

under these conditions, therefore the approximate solutions are valid

using L a 3 x 10-3 cm. This leads (using the relations in (19)) to

the following values of the dimensionless parameters:
V

t- 0.0111 90 ,o . . [. (8
3xlo 3 a0X 3
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Tabie I lists the results of each of the approximation methods and

the exact solution at various distances from the electrode-solution

interface. The accuracy of the collocation method 3b is impressive for

regions close to the electrode (or at short times). This method is

particularly interesting because of the low order (jul) of polynomials

used for the basis functions. It will be seen in the next section that

the use of the more sophisticated orthogonal collocation method leads

to continuation of rapid convergence as the approximation order is

increased. The approximation is thus capable of giving highly accurate

results with little computational effort.

III. ORTHOGONAL COLLOCATION

A. Introduction

The method of orthogonal collocation has as its basis the existence

of what is known as interpolating polynomials. If we have a real

function O(x), and we choose n points xlux2---xn in the interval Ix1Ix n]

then it may be shown [10] that there exists some polynomial of degree

n-l which equates to O(x) at each of the points xn . If the number of

points xn is increased, a new polynomial may thus be found which de-

scribes O(x) at these new points. Therefore, in the limit, O(x) can

be described at every point. Certain techniques may be used, however, to

use a relatively small number of xn (interpolation points) and still

describe P(x) accurately at all points in the interval. This is most

readily accomplished by choosing the proper type of polynomial. The

interpolation points are defined by the polynomial chosen, and are usually

t) e roots of that polynomial.

The purpose of orthogonal collocation solutions to partial dif-

ferential equations in to supply time dependent coefficients to the

!A



Table 1. Comparison of results of the several MWR for the catalytic

mechanism. Parameters: T w 10-2 s, [AOI - 10-3 M, k - 100 s- ,

D a 10- 5 cm2-1 90.

Concentration, species B, M/10 3

2/cm EXACT 1 2 3a 3b 4 5

2x406 .9934 .9944 .9954 .9944 .9936 .9930 .9949

4 .9868 .9889 .9908 .9888 .9872 .9861 .9897

6 .9802 .9834 .9863 .9832 .9808 .9791 .9846

8 .9738 .9779 .9817 .9776 .9745 .9722 .9794

Ix10 "5  .9673 .9724 .9772 .9721 .9682 .9653 .9743

2 .9355 .9452 .9546 .9445 .9369 .9313 .9486

4 .8749 .8920 .9103 .8906 .8758 .8650 .8974

6 .8177 .8403 .8670 .8383 .8169 .8012 .8464

8 .7639 .7902 .8247 .7876 .7699 .7398 .7959

lxl0-4  .7133 .7416 .7835 .7385 .7015 .6809 .7459

2 .4930 .5218 .5934 .5165 .4615 .4230 .5085

4 .2.43 .1977 .2924 .1913 .1287 .0906 .2118
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various powers of x in the polynomial, thereby providing O(x) at the

interpolation points xn. In the method described herein, the polynomials

chosen are orthogonal shifted Jacobi polynomials, and the interpolation

or collocation points are the roots of those polynomials. These

choices have been shown 111] to be sufficient to describe solutions to

the types of systems of equations that appear in electrochemical

diffusion-kinetic problems.

The advantages over finite difference methods are:

(1) Inherent stability of solutions.

(2) Greatly increased savings in computational effort.

(3) Ease in changing programs from one mechanism to another.

A given polynomial of degree n-l, i.e. Pni1(x), may be found if it

is possible to solve a set of simultaneous equations in the x n inter-

polation points, i.e.

.n-I n-2 1
a-n 1 + an-2 1 0 a -1 )

n-1 2 + n2 2  + - + ex 2 + 2 (69)

* xn-i n.2 
Qn-i x n + + + (Xn)

If the determinate in the xJ of the above system is nonzero, then a

unique solution exists. Since the xn are known, and the orthogonal

coll.jation technique will supply the aj, the solution of the %(xn)

Is straightforward.

It was mentioned above that as the number of interpolation points

are increased in the interval, the more accurately the polynomial

intaerpolatet to O(x) at every point. The exact error bound at a point !

*m where xM/xn is given by the relation
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Error [%;m] ; #L I Yn(m) I Zn (70)

where Y(x) - (x-x1)(x-x 2)---(x-xn)# and Z,, is defined if we know that

10nl(x) I < 2n for all x in Xlxxnl. This assumes that W(x) has con-

tinuous derivatives O(n) in the interval. It is obvious that as the

number n of interpolation points is increased, there is a rapid decrease

in the error bounds.

The individual reacting species' spectrochemical absorbances and

the total charge consumed during the reaction may be obtained by the

time integration of the appropriate concentration profile and the current,

respectively. For polynomials, a class of formulas called quadrature

formulas [12) exist such that their solutions yield exact values of

the integral of the polynomial over the designated interval. With

respect to a specified weight function (w(x), the formula

xn nn w(x)(x)dx - I iO(xil (71)

x1 il

represents an exact quadrature formula for the integral of O(x) with

respect to the weight function w(x) over the interval [XlXn]. The

0i are constants that are determined once again by methods dependent

on the type of polynomial that has been used to simulate O(x) in the

interval [xlXn1. Certain of these quadrature formulas lead to the

well known Newton-Cotes, trapezoidal, and Simpsons' rule integration

formulas. We will be concerned here with the highly accurate Gauss-

Jacobi, Lobatto, and Radau types of quadrature formulas.

B. Discretization of the Differential Equations

We are interested in solving an equation describing electrochemical

diffusion phenomenon such as the type
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Ot " Oxx, (72)

where

80Dti (73)

and

0 20
VOX (74)

OXX 6x 2

We assume that there is an interpolation polynomial that will

describe 0(x,t) over the interval 0,L]. The constants a in the poly-

nomial described in the previous section, are now functions of time

(W(t)) since we are dealing with a function 0 of x and t.

As mentioned, the orthogonal polynomial that we shall use to ap-

proximate 0(x,t) is the shifted Jacobi polynomial. These polynomials,

P N (YI6 ) (x) are described by the orthogonality relation

fix 6 (I-x)yPN(y6) (x) P W'6 )(x) dx - 0 (75)
0 P

where x6 (l-x)y is the weight function; Y and 6 > -1. Letting y - 6 - 0,

we have polynomials defined that are suitable for the linear diffusion

approximation. These are known as the Legendre polynomials. Since

the interpolation polynomial will have order (n-l) where n is the number

of interpolation points to be used for calculation of the values of

O(xt), the highest power of x in the approximation will be (n-l).

The trial function for 0 may thus be written:

n+2OT I a (Wx '  (76)

The n+2 terms come from the fact that x -0 and x -I are also roots of

the polynomial. In terms of the interpolation (collocation) points#

equation (76) becomes:
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n (xi "  - 1,2,---n+2 (77)E~it ,g(tx j i ,,--
j~l j

This represents a set of n+2 simultaneous equations in the unknown 0

and 4. Since the a, represent the elements of an n+2 vector of the time

dependent coefficients, the 0(xit) represent the elements of a vector

in the 0(t), and the xJ 1 are the elements of an (n+2,n+2) matrix.

Equation (77) may be represented in matrix/vector notation after

Whiting and Carr [5) as:

0(t) a c'Q (78)

at fixed xi , where the

- (- (79)

We now differentiate (77) ,.4th respect to x to get the terms in

the original equation (76):

dn+2 dx J-1 80
d(O(X,t)) - j(t) dx (80)

or in general,

d(k) n+2 d (k) xJ-1

dxk- l ~xtt ) - i il aj(t) dx(k )  
(81)

Specifically then, at the collocation points,

n+(kn) d (k) x J-1

X EXmj(it) M i 1#2#---A+2 '82)

ii

In matrix/vector notation, for k 1 and k - 2, this is equivalent to
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d--M)- -C (83)

and

d_0t) * c(t).D (84)

dx
2

where
dx.-

Cij - TX (85)

and

D d x (86)

The desired quantities are the aj (t), and follow from matrix algebra:

From (78) we have

Q(t) * (t) (e7)

such that

d-(t) -1 =
dx 0(tC and (88)

dx2

or

- A () and (90)

0 ( 3. 0(t) (91)
dx'

where A - -land B DO~-

For a single collocation points we have

T
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do (t) n+2

ax = X Aijo (xi ft) (92)
d2 x. j-l i

d 0 t B 0 (xi At) (93)

Equation (93) may be used immediately in the diffusion equation ot = xx

to yield

d0 n+2at E B ij(xjt) (94)

x=x i  Ju l x

The diffusion equation is reduced to n+2 simultaneous first order dif-

ferential equations in n+2 unknowns, 0(xj t).

C. Integration

There are many standard methods that may be used for the integration

of these simultaneous first order differential equations. We have

found [13] that the method of Calliaud and Padmanabhan [14] is probably

the fastest and most accurate for diffusion/kinetic equations. This

method, known as ISI3, has been shown [15) to be highly effective for

the integration of stiff coupled differential equations. The reader is

referred to the original literature for details of the derivation; the

pertinent features are given here.

In a Runge-Kutta method of integration, many derivative approaches

may be taken. In the semi-implicit ISI3 variation, the solution y at

the n+l point to a general differential equation

Xq ff(Y) ((95)

is given by

Yn+l Yn+ I R l1 (96)
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where r is the approximation order. The I for a third order method are
given explicitly by:

hf(yn)

12 - (l~hc1B(Yn)) (98)

and
hB (y) (c 3 11+c412 )

13 - 1i1hccB(Yn)) 
(99)

Here, B is the Jacobian of f(y) at yn, h is the integration step size,

c. are constants, and the I are elements of the identity matrix. The
R. and ci are found by comparing Taylor/power series expansions of

equation (95) with the Taylor series expansion of yn+l* Using this

procedure with the constraint of making the characteristic root at (-=)

equal to zero (a necessary condition for accurate integration of stiff

equations), the values in Table 2 for the ci and Ri are obtained.



Table 2

c1  0.43586659

c 2  0.75

c3  -0.27468397

C4  -0.10562709

R 1 16/27

R2  11/27

R 3  1.

Use of these constants in the above equations gives very accurate

integrations of differential equations possessing large differences in sub-

sequent eigenvalues ("stiff" equations). This is the primary method used ii

this work, and the Fortran program STIFF3 [1J is given in the appendix.

Included also are programs for calculating the roots of an orthogonal poly-

nomial (collocation points), the A and B coefficients for the descretized

differential equations, and programs to calculate the quadrature coef-

ficients and perform polynomial integration. The examples there demonstrat

the use of the programs.
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D. Spline Collocation

When dealing with equations containing large homogeneous rate con-

stants and/or trying to solve equations at very short times, it is obvious

that the use of a low collocation approximation order will not be sufficient

to simulate the response accurately. The rapidly changing response simply

might take place before the first interior interpolation point. This

is the same problem that presents itself in finite difference schemes

and to which Joslin and Pletcher [23 have treated for that technique.

In collocation techniques, there are several good ways to eliminate this

problem while maintaining the use of only a few collocation points for

the simulation. One such method is the automatic choice of the pre-sum-

mation factor as discus -d in section (F.b.). Here, another simple option

is discussed: the method of global splines.

o.a



27

There are techniques for dividing the interval of interest into

many subintervals, and then performing a standard collocation technique

on each subinterval 1153. The solutions at the outer boundary of each

subinterval become the internal boundary conditions for the next sub-

interval. The procedure continues until the original outer boundary

(or last subinterval) has been treated. The number of equations is

raised by a factor equal to the -umber of subintervals. This technique

then becomes similar to simply raising the number of mesh points in a

finite difference scheme, although one finds that for similar accuracy

between the two methods, this spline technique is still significantly

faster.

The diffusion boundary concept provides a very simple but highly

efficient spline method. Initially, the original spacing between the

collocation points is compressed so that their total spanned interval is

just slightly larger than the region where the profile is changing most

rapidly. As the width of the change increases, the concentration value

is tested at the last internal collocation points (N or N+l). As the

concentration there begins to become larger (or smaller if appropriate)

than the boundary condition for that species, then the distance between

the collocation points is expanded, and the procedure repeated. In this

new repetition, solutions at all times less than tht time at which the

expansion was made are discarded as inaccurate. The procedure is con-

tinued until the final desired time has been reached. Solutions of

exceptional accuracy are obtained. For instance, the maximum relative

error in a catalytic mechanism simulation under a chronoamperometric

experiment where the rate constant was 100 5-1 and the integration was

from 10a s to 20 s, the maximum relative error was 0.07 percent.
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The procedure for implementing this "spline point" method is quite

simple to execute. The subinterval is normalized to a (0,1) interval

by a variable transformation, and the normal integration procedure is

followed. However, the value of the concentration at the outer points

is tested continuously as mentioned. The test value is dependent on

several factors, including the rate constant, time of integration,

number of species, etc. It was found empirically that in using 6 internal

collocation points (6th order Legendre polynomial) for the ECE/DISP

mechanism under a chronoamperometric experiment, that a branch test at

the N+l point of 0.001 concentration units was sufficient to maintain

high accuracy even at very high rate constants (up to 106 first order

and 1010 second order) when compared to finite difference schemes taking

computing times up to 104 times as long and extremely fine mesh sizes

(high memory usage).

Consider the general partial differential equation

t 7 62 (100)

dx

in the interval (0,1). If we desire to insert a spline point at some value

x, such that 0 < x 1 , then we would simply make the variable trans-

formation

z x (101)

In our equation to renormalize the boundaries. The equation then reads

80 1 8242O (102)
x 6z

I
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Discretizations then, leads to

601z 1 11+2
M f BijON't) (103)

6tz. xs  j=l

Integration of the set of equations (103) is performed as usual. When

the branch is made to a wider interval, x is changed and the process

repeated.

Spline techniques are given in example 3 in section E.

E. Discretization Examples

Example 1: The reversible charge transfer mechanism under a potential

step to a region where the kinetics are diffusion con-

trolled.

ne -
A B (104

The descriptive equations and boundary conditions are:

6[A) mD 6 2[[A] (105
6X"

6!B . DB 6 [2 ] ME

6T 6X 2

[A] 0 , T [B], -OD 1x, - 0 (107

[A)]xo - [A]-,T - [A*] (10E

0,T " jO,T

Inserting the dimensionless parameters

1, x , aidcAi- ,

we have
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aCA 62CA
- a 2 (110)
at 6x

6t. 6X

cA(Ot) = CB (.t) m CI(X,0) - 0 (112)

cA(xeo) a cY("t) a 1 (113)

d- A (114)
1=0 X=

From (93), we then have

dc Ai N+2
t I Bi c A(x.,t) (115)

lxi j-= ia j xjt

dt cB I B i c B(x.,t) (116)

After partial expansion, we obtain

dcA N+1
aB 1 C,A(0,t) + BiN+2CA(llt) + I DijCA(Xjut) (117'

Sxi J=2

dc B N+1

t-x J Bil CBcOt) + iN+20B (let) + z BijC Bxjtt) (118:

The known boundary conditions (112) and (113) for c A(Ot), cA.(l,t) and

c%(1,t) may be entered at this point to give

dcai Bit N+(

-Ixi N+2 + 2 i,JcA(xj t), (119

dcB - 14+1 (x)t)
+ j2 B jc l x i t )  (120

"= I I m l n IS I s g u I i I 1 1 I l l n s m in tl m l 
I

. nn i iJ =l2 m • ii
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Note that we must use some other means to eliminate cB(Ot). This may

be done by discretizing the boundary condition (114) with (92).

dcA t IcsAix ° - -dc (121)

N+2 N+2
Al 1JCA(xj't) - AlJcB(xit) (122)

N+l
-[Al,lCA (0,t)+A1,N+2 cA(1,t)+ E Ai jcA(xjot)] Al,lcB(0,t)

j=2 1 B

N+l

+AIN+2CB (lt)+ E A ijc (xjut) (123)

Inserting the known boundary conditions (112) and (113) again for cA(0,t),

cA( ,t) and cB (1,t) we have

N+1 N+
-[A 1 ,N+2+ I A i jcA(xjtt) - A1 ,lcB(O,t)+ I Aijc (xilt) (124)

Solving for C B(0t),

N+1

c(0,t) - - A A1  +2+ A.(xit)] (125)
1 ,N+J:2 - 'jcA

This explicit value may now be substituted in (120) to yield

dc N+lI - - "il +2A + I A (c(xiet)+CB(xpt)]
tX A1 ,1 [ 1 " J2 i'j

N+1
+ I D c(x ,t) (126)

Now the problem has been reduced to the simultaneous solution of

2N equations, i.e. (119) and (126) in order to obtain cA(t) and c,(t)

at each of the collocation points xi. 4
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We will depart from the normal format at this point to completely

develop the program necessary to solve this particular basic example.

In the later examples, only the equations necessary to be programmed

will be given.

In this example, we use a Legendre polynomial of order six (six

internaZ roots or collocation points). We know the concentration at

both boundaries for the A species at all times, and we know the con-

centration of B at the outer boundary at all times. The concentration

of B at the electrode surface may be found easily if we know all of

the otherA andB concentrations at each internal point as one can see

from (125). For a large savings in computational time and programming

ease, it will be simpler to simply solve for the six internal con-

centrations of A and B (12 equations) instead of at all 8 points (16

equations). The procedure calls for the writing of 3 short subroutines,

FUN, DFUN, and OUT. In this example, FUN consists of defining the

differential equations and returning their values as F(I), I - I to 6

for the A species (119), and F(I+6), I - 1 to 6 for the B species. We

will use Y(I), I - 1 to 6 for the six concentrations of species A at

the internal points, and Y (1+6), I - 1 to 6 as the six internal con-

centrations of species B. From (119)t therefore, we have

dcA 6
Ft Ixdt a B2 , 8  jaiB2 ,+lcA(xj~t) El

dcA, 6
F(2) a at - B3o8 + I B ZB 3 ,j+lcA(xitt) E2

* . x2, jal

F (6) - C - 7 ,B+ B cA(xjet) E3

Note that for programing simplicity, we have changed the i and

j indices slightly. Since we are considering the internal solutions only,
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the i and j indices on the right hand side of the equations on the A

and B coefficients are simply changed to i + 1 and j + 1. We are

simply refering to
dcAI

FM(I) - xi 2,7 E4

as

P1)-dcA EFM -1 atX i 1,6 ES

The j index on the summation thus is changed also from j = 2 to 7 to

j - i to 6 to maintain consistency.

Partially transforming to FORTRAN language, we have

6
F(I) - B(I+1,8) + Z B(I+l,J+l)*Y(J) E6

J=l

To get rid of the summation symbol, we use the following loop

DO 1, I - 1,6
TDDER1 a 0.
DO 2 J - 1,6

2 TDDER1 - TDDER1 + B(I+l,J+l)*Y(J)
1 F(I) = S(1+1,8) + TDDERI

Thus the 6 differential equations are defined in subroutine FUN and

will be returned to the main program for simultaneous integration.

Programming for the six differential equations F(I+6), I - 1 to 6

for the six internal concentrations Y(I+6) for the B species follows

a similar line of reasoning. We also "re-index" for programming

simplicity in the same manner. (Replace i and j on right hand side of

(126) on the collocation coefficients A and B by i + 1 and J + 1 and

change the summation index from j - 2 to 7 to I - 1 to 6.)

4
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dcB B 6

F (7)- A I ' mh- Aj 2l Aj+l)CAlxj~t)+cB(Xj't))

6
+ Z B2,j+iC B (xjt)] E7

dc BB7?16
F(12) - -" A A 0'+jE AT j+l(cAxj ' t)+cB(xjlt))

6
+ C BJ J+Cs(X-"t)] E8

Partial transformation to FORTRAN gives
6

P%"+6) - -B(I+l,1)/A(1,l)*(A(l,8)+ I A(I+lJ+I)*(Y(J)+Y(J+6))
J=l

6
+ Z B(I+lJ+l)*Y(J+6)
J=1

Again the summation signs may be eliminated by the following loops

DO 1 I - 1,6
TDDER2 - 0.
TDDER3 - 0.
DO 2 J - 1,6
TDDER2 - TDDER2+A(I+l,J+l)* (Y(J)+Y(J+6))

2 TDDER3 a TDDER3+B(I+1,J+1)*Y(J+6)
1 P(I+6) - -B(I+l)/A(I,l)*(A(l, 8)+TDDER2)+TDDER3

Thus, the entire subroutine defining both sets of differential equations

for the A and B species would appear as follows:

(1) SUBROUTINE FUN (Y,F)

(2) IMPLICIT REAL*8(A-H,O-F)
(Implicitly invoking double precision mathematics for all real
variables)

( 3) DIMENSION Y(16), F(16)
4) COMMON A(30,30), B(30,30), ROOT(30)

(The collocation coefficients A and B and the polynomial roots
ROOT have been defined by subroutine JCOBI and DFOPR. They are
passed to FUN, when needed, by the COMMON block statement.)

(5) DO I I a 1,6( 6) TDDERI n 0.
7) TDDER2 - 0.

(8) TDDER3 a 0.
(9) DO 2 J 1,6

14
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(10) TDDER1 - TDDER1+B(I+1,J+l)*Y(J)
(11) TDDER2 - TDDER2+A(I+I,J+l)*(Y(J)+Y(J+6))
112) 2 TDDER3 - TDDER3+B(I+1,J+I)*Y(J+6)
(13) F(I) - B(I+l,8) TDDERI
(14) 1F(I+6) - -B(I+l,l)/A(l,l)*(A(1,8)+TDDER2)+TDDER3
(15) RETURN
(16) END

The next subroutine that must be defined is DFUN. DFUN is used

by the integration subroutine. DFUN must return the values of the

derivatives of F(I) and F(I+6) at each one of the collocation points

xi as DF(I) and DF(I+6), I - 1 to 6.

The differentiation is seen to be straightforward upon expansion

of one of the F(1) terms, say F(l)

F() - B2,8+B2,2cA (xlt)+B2,3CA(X2,t)+B2, 4cA(x3,t)+B2,ScA(x 4,t)

+B2, 6CA(x5,t) +B2,7CA (x6 t) E9

We desire

d(F(l)) j-Ito6 E10
dcA(xj)

We have, by inspection,

DF(l,l) = -(jl) B Ell
dcA tx ltt) 2,2

DF(l,2) - 2d (F ( ))  L El2

DF(l,6) a d.(6) B2 13

In general, we have

DF(I(J) 1dcA(xjt) B('+",J+l)
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These are programmed into DFUN as follows

DO 1 1 - 1,6
DO 1 J - 1,6

1 DF(I,J) - B(1+1,J+I)

The F(1-6) are differentiated similarly. For instance,

F(7) w--2[A 8 A 2 2 (cA(xltt)+CB(xlot))+A2 3 (cAx 2 't)cB(X2 t))

+ A2 , 4 (A(x 3 ,t)+B(x3,t)) + A2 , 5 (CA( 4,t)+CB(x 4,t)) +

A2,6 (cA(xSt)+cB (x5,t)) + A2,, (C,(AX 6, t)+cB(x 6,t) + B2 , 2c(x 1 t)

+ B2,3B(X21 t) + B2,4cB(x3 ,t) + B2 ,,c,,(x 4 ,t) + B2,6cB(x5,t)

+ B2,7cB(x 6 , t) ]  E14

d (F(7))
We desire ac, j - 1,6 E15

Note that the cB(xjlt) are the Y(I+6), so that we use the nomenclature

DF(I+6,J+6) for the B species.

DF(7,7) - d(F7)) 82,1 A +BE16dc B x tp A11 212 + 2,2

d((7)) B,1
DF(7,8) - d:2xt -J-I1 A 2  + B2E17dc B( 22) 1 2,3+823

DF(78' a d(F(7) A + B2

DF(7,12, o~6t - + , 2,7 1
dc B(x 6 tt) AII A2g7  2,

or in general,

DF(I+6#+6) a (xI t *A(I+1,+l)+(+B(+1,J+)

This is programed exactly the same as the DF(IJ) above. The entire

subroutine then appears as follows i

• • • • • u|wsm •w ~ w msw • • m • sw • ss 4 ,in ww - -



(1) SUBROUTINE DFUN (YDF)
(2) IMPLICIT REAL * 8 (A-HO-Z)
(3) DIMENSION DF(30,30)
( 4) COMMON A(30,30), B(30,30), ROOT(30)
(5) DO I I - 1,6
(6) DO 1 3 - 1,6
( 7) DF(I,J) a B(I+l,J+I)
() 1 DF(I+6,J+6) - -B(I+1,l)/A(I,l)*A(I+I,J+l)+B(I+,J+l)
(9) RETURN
(10) END

The OUT subroutine is called at predetermined time increments from

the integration subroutine STIFF3. When OUT is called, the 0 values

for the concentration profile (Y(I) and Y(I+6), I = 1 to 6) are available

for output. Four parameters are transferred:

X - the current value of the time

Y = the current value of the concentration at each collocation point

IH = number of bisections that occurred before successful integration

0 - stepwise acceleration integration factor.

In general, IH and 0 are of little interest for our purposes.

One thing that may be done first in OUT is the calculation of the

unknown boundary condition--i.e. the value of the B species at the

electrode surface cB (0,t). For convenience we call this value

Y(13). From (125), after re-indexing,Y(3 (t A1 +6 E1

B-- jAl1 1 + E Ai+l j+l(cA(Xjvt)+cB(xift)) E19
101 Jul

We perform this calculation in OUT since all of the cA and cB (Y(I) and

Y(I+6)) are available. Partial conversion to FORTRAN gives

DO I I a 1,6
TDDER4 a 0.
DO 2 J n 1,6

2 TDDER4 - TDDER4+A(I+l,J+ )* (Y (J)+Y(J+6)
I Y(13) * - i/A(1,2)*(A(1,8)_TDDER4)

The rest of the OUT subroutine may be used for calculating the current

or spectrochemical absorbance, etc., as well as defining the output

format.
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For instance, the flux at the electrode surface is given by

dcA N+2
a Z A ,cA(xj5t) E203x- i0 o J=l

Partial expansion gives

dcA  N+lAx Al,,CA(Ot)+Al 8cA'(let)+ Z AI JCA( x j ' t)
x 1 0 j=2

N+1
A + E ,jcA(xjt) E21

after insertion of CA(0,t) - 0 and cA(lt) - 1.

Switching to the new index for programming, we have

6
FLUX - A(1,8) + Z A(l,J+l)*Y(J)

J-1

Eliminating the summation sign, we have

TDX - 0.
DO I J = 1,6

1 TDX - TDX+A(I,J+l)*Y(J)
FLUX - A(1,8)+TDX

So to calculate the surface concentration of the B species at all times,

and to calculate and print the flux as well as the profiles for each

species, the subroutine would appear as follows:

(1) SUBROUTINE OUT(X,Y,IH,Q)
(2) IMPLICIT REAL*8(A-H,O-Z)
(3) DIMENSION Y(30)
(4) COMMON A(30,30),B(30,30),ROOT(30)
(5) DO 1 1 a 1,6
(6) TDX-0.
( 7) TDDER4-0.
(8) DO 2 J =1,6
(9) TDDER4-TDDER4+A(I+I,3+I)* (Y(3)+Y(J+6))
(10) 2 TDX-TDX+A(1,J+1)*Y(J)
(11) Y(13)u-./A(l,1)*(A(I,8)+TDDER4)
(12) 1 FLUX-A(,8)+TDX
(13) WRITE(6,100)XFLUX,(Y(I) ,I-1,6),Y(13), (Y(I+6),I-1,6)
(14) 100 FORMAT( TIME-E20.15,/,' FLUX-',E20.15,/,4X,

I 'O.OO'f000,OO 3(FI6.1llX),/lX,3(F16.11,X) ,3X,
I 1.00000000000;//,4X,Fl6.11,X, 3(F16.11,1X),/,

1 IX,3(FI6.11,IX),3x,'0.00000000000')
(15) RETURN
(16) END
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The main program for the solution of these equations would appear, for

example, as follows:

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION DIFl(30) ,DIF2 (30) ,DIF3(30) ,VECT(30),F(30),OLD(30)
DIMENSION YOLDI (30) ,YA (30) ,tYK (30) ,YK2 (30) ,YK3 (30)
DIMENSION DF(30,30) ,DFOLD(30,30) ,W(30) ,Y(30) ,YOLD(30)

(The above defines the subroutine variable arrays.)
COMMON A(30,30) ,B(30,30) ,ROOT(30)
EXTERNAL FUN,DFUN,OUT
N-6

(Defines order of polynomial used and hence the number of
internal collocation roots.)

N0=1

(Specifies that the X-0 and X-1 boundaries will also be roots.
(see JCOBl))

AL- 0
BE-0

(Specifies that a-B=0 and hence an orthogonal Legendre poly-
nomial will be used (see JCOBI).)

ND=30
(Indicates maximum vector dimension size for this program - note
this is the array sizes in the DIMENSION statements.)

CALL JCOBI (ND,N,N0,NLAL,BE,DIF1,DIF2,DIF3,ROOT)
(Calculates the roots of the Legendre polynomial, i.e. the Xi.)

DO 4 I - 1,8
4 A (I,J) -VECT (J)

(Calculates the A matrix collocation coefficients and places
them in the A(IJ) matrix.)

DO 5 I a 1,8
CALL DFOPR(ND ,N,N0,NlI,l,DIFlDIF2,DIF3,ROOT,VECT)

5 DOSJ - 1,8
B (IJ) =BECT (J)

(Calculates the B matrix collocation coefficients and places
them in the B(IJ) matrix.)

X0=0.D0
X120.D0

(Sets the starting and ending times for integration.)
EPS-l .D-06

(Sets integration error limit at 106.)
DO 6 I = 1,6
Y(I)-l.D0
Y (I+6),,.D0

(Sets initial conditions for A and B species.)
W (I) -1.D0

6 W(1+6) = I.D0
(Sets weight factors for results at 1.)

H0l,.D,06
(Sets initial value for integration interval time step at 10
units.)

CALLSTIFF3 (12,30,l0,FUNDFUN,OUTX0,XlH0,EPS,
1W,YYOLDYOLD, IP,YA,YKXYK2,YK3,DFDFOLDFFOLD)

(Begins integration of the equations contained in FUN. There
are 12 equations to be integrated and OUT will be called every
10 integration steps.)

STOP
END
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These four user defined programs (MAIN, FUN, DFUN, OUT) are then

compiled with the six library subroutines STIFF3, JCOBl, DFOPR, SIRK,

LU, and BACK (which perform the integrations).
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Example 2: The ECE/DISPI mechanism under a potential step to a region

where the kinetics are diffusion controlled.

nle
A --- & B E!

k 1 1

ki +

n 2e-

C -- 6D E20< El

(127)
k2

S+C -A+D Homogeneous e transfer, equilibrium constant K.

k 3
D'E
k 4

The above mechanism has been investigated by Saveant et al. [16] and

Bewick et al. [17].

The equations to be solved are:

6T D]+ k2  [B] 
(128,66T " A 6X2 2

6tB  D62 - k [s] - k2 [B][C] (129T D 6X2  1

6 -C Dc 6 C + k [B) -k tS] tC+ (130
6X

.I , D 1 + -+ (Cl k [D)+ k4[EJ (131
6T D 6X2

T8 DE V IE) k ) k , (132
TXn

The boundary conditions are:
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[AJOT -IB]., T  IC)M,T a ID]MT - [E). T  0 (133)

[B)x,O [CIxgO - [D)x, 0 a [E~x,O - 0 (134)

1X,0,T - ,T - OT

DT e  X __AIo

Using the dimensionless parameters t - x and
L2  L~ I (A)'an

a D (136)
k L2

k
8 - [AO (137)

k3

k3  (138)

k4

6 -(139)

the equations (128-132) and boundary conditions (133-135) are converted

to the following dimensionless forms:

CA - 2cA + Oc c (140)

6t 6x2  BC

cB 62 CB _ c (141)

--.--.. cB  (142)at ax

LCD - D+ c cD.c+ (142)
6cc 6 2cc

D  62D

at ax
mmmaI-



- - + YCD - 16CE (144)
6t=X

CAM )- c 8(1 "t) a C c(lt) - CD lt) -Cr(1 t) -0 (145)

C3 (x.O) acC(X.O) - %D(x'O) a FE(x.O) - 0 (146)

dc dj dcC c(17
I x - g - Sim =x7 - (1I7

Ilote thatk the norm~al assumption of setting all of the diffusion co-

ef ficients equal to each other is not necessar", in orthogjonal

collocation simulations, and is simply done bere for brevity.

Precisely the sane techniqiue is used as in the first exazrple above

to discretize the equations. The results are;

dcAl N+l

d' w MID lN+2 + I B -c (Xift)] + OCB(xiut)cc(Xilt) (148)

dc B B a 14A +1 ( )+ x ,t
t A 1  [A1 N+2+ I Zl A (cxj t+Bxt)J

+ I a ij c3 x BN,t)) - c B(x~it)Oc B (xitt)c C(x±ut)(1.)
J=2

dcC 1+1
Tt- z iJI (xtt)+ B xif)-BB (xrt~C~x~t)(150)

I 3 1 41
iE*_ mb(.JE Alj j(cc(xjut)+cD(xjit))] + Bi#JCD(xjet)llx 1. 32 1-2

+ ac a Niet)cC~l:ipt) -YCD(xit)+
8 cE,(:cit)(1)



35

1% Z.+ ' t" +1
dcE a +1 E B~x)

- - X I ,] j2 c_(xj
xi 1,1 J-2 '=2

+ YCD(Xiut)-6cE(xit) (152)

This last equation nakes use of the fact that the flux of the

species E at the electrode surface is zero, i.e.

dc E N+2

jx j1' A Ejc x It) = 0 (153)

N+1
A ,cE(0 t) + A1?j+2cE ( l ' t) + I A c (x.t) = 0 (15')

III j=2 lIj E j

Since c E(1,t) = 0, we have

cE(Ot) A 1 1 A (155)

which is substituted into equation (144) after initial discretization.

Spline lodified Collocation Examples

Example 3: Chronoamperometric single pulse

(a) neversible charge transfer under diffusion controlled kinetics.

-ne-

____ (156)

+ne

t x TD V n z (A C )- DDA DB (157)
LLCA A[A-j B, A- 1

CA(Ot) a CB(x,0) a c (let) - 0 (158)

CA(lt) a CA(xn) 1 (159)
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(6CA\ 6CB\ 10

dcA I 1t+
at 2 I [D,N 4 2 + I BiJcA(zj't)J (161)
z2 x j=2
ii 9

COB 2 Is i, +za d. U (162)

(b) Reversible Charge Transfer-fleversible Chemical Reaction (EC~ev)

-ne- k

A B C (16IF3))

+-ne k b

t TD x x k kb 2mk~k

C fUIj- CB wIBI~ C )~i DacDA DB =DC (164)

cA(O't) - cB(ltt) =CC(lgt) -cB(Xufl) mcC(XUQ) -0 (l65)

A(llt) = c ( I ) m Ag(166)

___ 6c (6C

6x A)I Ow(6xX (T) -O (167)

-- y I B -++IBiJAz t (168)

des I 1 iol N+1
z- -Y A AA12 1 A Ic A(zjut)+cB(zjpt)JJ

N+1 m

+ 1 -~it 0Lc1D(zi~t)-I(cC(zi~t)j (169)

JM24
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dcc I~ i 1 1I+1
-I Ai1,j c c(zjut) + 1 9 'I (jt

I2. x 1 1 - j-2 C~j

+ c B(CBZiet) -Kcc (zi t)J (170)

(c) Reversible Electron Transfer -Dirmerization

-ne- k f
qr±f 2B.P %C (171)

TD= x x k b- =Alf
L x

k0Y, (172)

[A] [BI] c [C)I B-D 13
CA =-rT CB = ix-A6 CcAO r D=A= 13

CA~(O't) a %B(lt) -CC(lut) cB(x'o) - CC(xiO) -0 (174)

CA(l"t) - cA(x.O) - CA" (175)

6- -C 6 0 (176)

at (B2 [Br1 42 + r D ijicA (zjut)I (177)

iE~ -~ - r I~N.,+ I (C izft)+C (Z&et)3I

+ c (I.t i %I)-Cn~) (178)

E~ A c .LiUt) + z+B jc (zjit))
WE- in- 71 X7 Aij C aet Ir

- a 2,1 Jm2 j 2

+ O*JC2 (zt)KcC(z:t)3 17
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(d) Reversible Charge Transfer - Disoronortionation

,nc kf
A 4---*B A + w~--CQ 

0

*ne- kb

X Z x kb k 2 (VL\

T2 LK- k-[Ajkf+kb 0 m0

CA- = ~ i TATCBw A c w 79 
(102)

CA (,t) - CB(lt) C (1,t) = CB(1,0) - cc(1,,) - 0 (163)

CA(0,t) - cA(zO) - [AOl 
(it4)

eA l 1 11+1
[Bi  -+ £ Bi jcA(:jut)] - [c.zi,t)cD("it)at i 2 it)2 J=2 iJz' t~

--!%Cc (z itt) ]

dc., 1 r Ni1 ]1
a i- [A .. + E A I c ,(Zjt)+c (zit)]at zi, 77 A l, 2 tj

+ Z Di jcD (zit) " B[cA(:iIt)cB(z, t) KcC(zi t)] (17)

J-2

6 Cc1 1 i l .+ 1

-- Z A- E: A. c(.ijet)+ E B ijcC(zipt)]7,P' xs 1,1 J= 
i

U .[c.(:i#t)Cn( ,t)K-Cc(Z it) (188)

(e) Reversible Charge Transfer - Catalytic Reaction

(The FORT1JWI listings for this example are given in the Appendix.)
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-ne k
A -B ±A +C (189)

+ne [l

hT kL D m DA B DC(190)L xD A D D

CA 1T CE [B a (191)

%A(Out) a CB(lut) aC 0,(zO) a 0 (192)

CA(1,t) - cA(zO) c B(0,t) - c ,(z.,t) + CB(z.,t) a1 (193)

6A 6A B A194)

ldcA\ (194)N~

dcA3 1 N+1

dt 2 (B 1i.l + Z Di c(zjit)] + SBc(zit) (195)

The Jacobians for these two equations are given by:

/dcA

i j 6 1 i 6i (197)

j x3

-j6i i B6ij (198)

where 5 is the Rroneclcer delta (a1 if i a ;* 0 if i j)
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Example 4: Spherical Diffusion - Chronoamperometric Single Pulse

(a) Reversible Charge Transfer

-ne-

A-- (109)

+ne

The equations for the system are:

Ai - D ---?- (200)
6T A R R6R

[A]R T 0 Q (201)

[A]wT [ [A]RaROO - [A* ]  (202)

1A)I 81B] (203)
- J RR 0  R j R.R0

where R is the radial distance from the center of the spherical elec-

trode, and R0 is the radius of the electrode. We choose the following

convenient variable transformations:

t TD R- CRaJAt = ' r2  r- D ADA cA- (204)

Effecting these transformations on equation (200) we obtain

6cA 6 cA 2(L-R0 )2  6CA-0 __r + -- (205)
.1 + 2

6t 6r r(L-. 0) +R0 (L-RO) 6r

or, after simplifying,

!A 6 2 -A 2 C (206)

6t 6r r+o* 6r

where
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0 "(207)

- (-U"

Also, we have

CA(0,t) - 0 (208)

CA(1,t) ml (209)

6c^ 61
rIrl r (210)

6 Il 6jr,

The second term containing r and the first partial derivative of the

concentration present no problem in orthogonal collocation since we

have the discretization for all partial derivatives:

dc N+2 2
" r_ M I t) j-(rA4. ut)-- r 1~ 1~ A i o) "a J! AijcA(rj,t) (211)

The r is sinply replaced by the ri at each collocation point, where

the ri are the roots of the approximating polynorial (i.e. the xi or

collocation points in the planar cases). le then proceed as before

to solve the set of simultaneous differential equations. We reduce

the order by 2 by inserting the boundary conditions.

dCA{ N+l

J ilc~(0,t) + BiN+2CA(lIt) + I BijcA(rjet)

2 N+l
+ [A c (0,t) + A. c +2c(lt) + Z A. c (r et) (212)Sri+B i,l A 1,N+ j-2 ii A 'i(22

Substituting the known values for cA(0,t) and cA(lt)# we have

dcA +A+l 2 +A 3
i r i, + I BijcA (rjt) r +0* .-it +2+ A c(r t) (213)Iri ,+2JU-2 i i+B I+ J=2 ij A j' !
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At this point, it is worth considering the effect of choosing

orthogonal polynomials other than the Legendre (y - 6 - 0 in equation

(75)) polynomials. Although beyond the scope of this chapter, it may

be shown that a m.ore suitable snretry for spherical diffusion in-

volving the differential equations used here is one in which we choose

y -I and 6 - 1/2.

The collocation points and the Ai and Bij thus are different fror.

the planar diffusion cases. The new values are given by the JCOBI

and DrOPR subroutines simply by changing the value for y(AL) and 6 (BE)

in the main program.

Although the Legendre polynomials give excellent simulations even

in this case, the new choice of y and 6 is even better. For example,

integration of the equations and subsequent calculation of the

current from

n"&ZND[Al (6cA\ nFADEI N+l
(L-fi0 a [A +~~" ZLf0  [Al++A (r~it)] (214)

I -(L 60 r r.- L0
---R " ) '00 ,11+2 j=2 ij A

leads to the following results for 0* - 1 x 10- 4 in equation (213), and

time point t = 0.03715:

Iexact

Isimulated

y - 6 - 0 (Legendre) 0.997372

y - 1 6 - 1/2 0.929958

Six internal collocation points were used in the integration.

The additional accuracy can become important in dealing with very

rapidly changinV profiles.

Spherical synmetry may also be treated by recognizing that in

such a caso, the difforential equation is also valid for all radial
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!2

directions, i.e. the equation is valid for 1 as well as R. One my

make the variable transfornation

2
u = r (215)

in equation (200).

.e notice that

-- u = 2 A (216)
dr du dr du

and
-2 dcA cA CcA  d2cA

d A d A A d cA
tdrA =r (2fii -) 2 L-4 i- (217)

At the collocation points, equation (211) becomes

CC dc d2cA 4ul/2 dcA€A, icA+ 4u + (218)
= 2 d- d- 1 " du

with

CA(Ot) - 0 (219)

cA(llt) = cA(uO) - 1 (220)

uA = uo ,u(221)

U =J = 6 u-0 C

Discretization of equation (210) with insertion of the boundary

conditions yields

dcA 2+1 11+1
[A1 11 +2 + £ Aijc,(ujt)] +4ui LBi N+2 + w jcA(u.,t))- 1#11 2 ' -2 E B

i "4ul/ N+I 6u1/
+ /20(i,.I+2 + I A ijcA (uj t 1 1 i/2+. [AiN+2

+i (A2 14+ 6U / i

N+1 1+1
+ E AijcA(ujet)J + 4ui [BiN+2 + E 2 Bijc (ut)] (222)J2 "" -
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The ui are simply the squares of the values of the collocation points.

This set of equations may then be integrated by the standard nethods to

obtain the concentration profiles. This set of equations is probably

nore accurate than those previously described, but a cetailea comparison

has not been made. The pollmorials used here again shoulr be those

where Y a 1 and 6 - 1/2.

Example 5: Chronopotentionetry - Planar Electrodes

(al Simple 'Reversible Charge Transfer

ne

A -"B (223)

The diffusion equations and boundary conditions describing this

ex-erin.ent are

61)" D 62 1A] (224)

61B' D 62 1B) (225)
6T 6X2

[A]X - [A]o*,t A 1] (226)

[B]X - [B] =0 (227)

D = DA -D1 (221"

- D 3 (.I (229:

i-nFA'DA (230

[B
-nF- nAX (231
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Insertion of the usual dimensionless variables for concentration 
and

distance, and the new time variable t = T/, Y the transition time, yields:

[AJ6cA d[A*]62CA (232)
-- -a 22 (3)

6t L2 6X2

(Ai66c3  D[A*36 2c
-J B D--- -2 B (233)

a6t L 6x Dr

and after simplifying and 
letting 0 -

62c2

A B 6.cA (23)

6t 6x

-C B (235)

at 6X

The boundary conditions (226-228) are treated similarly and 
become:

CA(xO) - 1 cA(llt) a 1 
(236)

cB(X,0) = 0 cB(lt) W 0 
(237)

( 6cA .(6CB) 
(238)

Discretization of equations (234) and (235) yields

dcA N+2 
(239)

dt X j&A j

de N+2
W 0. t) (240)

Expanding (239) and (240) partially, we have
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dcA N+(
--l~ W O[ID A0t*B CII't)+J IZ B,,JCA1Xj,t)) (241)

dt - BIBi,lcB(O't)+Bi,N 2 cB(2 t)+ r B 1jcB(xjIt) (242)

Insertion of the boundary conditions (236) and (237) yields

dc N+2cxi= O[Bi',lcA0,t) + BiN+2 + I B.c~jr) 2WE- 2 J ijcA(xjt)J (243)

dcB  N+ 2dBI - O[BiC(0,t) + E Bi jcB(xjlt)] (244)

Ile need an expression for CA(0,t) and cB(0,t) explicitly. From (92)

applied to the boundary flux condition (238), we have

dc A N+2
S a r AI  ,CA(Xjut) (245)
x W0 jul

dcBj V+2
x W I Al i cB(xjIt) (246)
x -O j=l

Now, equation (230) is also made dimensionless as follows. Since:

ax-0 L k i. 0  , we have (247)

nFA'DIMOJ nAA . 1/2 a1/2
L dx/x O / (248)

Combining this expression with (245) and (246), we have
N+l

CA(O~t) - Z - . IA(xDit)

N+1
C (Ot) a R - I a(c25(X0t)

J2 (250
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where

iT A
0A 1 1  FA[*I -s) ,N2 (253)R - [Li i,  2
0. [ I n .[AID B0 "114+2 (5

1 it'

1 1 LnFAIA.,D B 1 , and (252)

am (253)

Substitution of (249) and (250) back into (243) and (244), we have

dc A N+1"£ bS jc(x.,t) t and (254)+0j-2 , (254)

dc, N+1
t Ti + ! b -c(x , where (255)1 jm2 i'j B ,t

Si = B[BiIQ + BiN+2]  (256)

T BilR and (257)

bitj -B illaj + B, j  (258)

Simultaneous solution of the 2N differential equations by the inte-

gration subroutines described previously give accurate and fast

approxirations to the concentration profiles of A and B as a function

of tir.we.

The desired response, potential as a function of tine, is given

then by equation (231) in the form
Z - E" RT'. lC(Ott)

E E*- F-ln (0 ) , (259)

with cB(Ott) and cA(O~t) being supplied at each tire integration step

by equations (254) and (255).

• • w• • • •• • . m • * I
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(b) ECrev Mechanism

The extension of the mathematics to include kinetic reactions is

imrediate. Consider (under the same experimental conditions) the

ECrev mechanism:
ne- kI

A B B C (260)
k 1

with k_1
K 1 -, and (261)

X = (kI + k_l)T (22)

The diffusion-kinetic equations and boundary conditions describing

the systen are:

A LAU- D6 2 [A (263)
8T A 6X2

621 - D 2 [B- k [BJ + k_[C] (264)
6T 8 6X2

[C]+ (265)

6T C x2 1
,

[A)x, 0 - [A,lT - [A*] (266)

[Bixo, [S].T a 0 (267)

1Cx,o Wc]UT -0 (268)

DA ) - (269
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- (270)

Introducing the dimensionless paraveters for concentration, timee

and distance, the following sizplified equations are readily obtained:

SC 2c
!CA n CA (271)
6t .

6cB . 2B - X+K)1 (cBKcC) (272)

6t x

SCC 2
6c C  6cc -1
- w O= + X (1+K) (c 3-(cC) (273)
St 6X

cA(xO) - cA(let) = 1 (274)

cB(x,0) - cB(lt) - 0 (275)

Cc(xO) - cc(let) a 0 (276)

T6 1  a .(!c3 a m (277)
x -) xz "O 6x x no

( CC °  0 (278)

Equations (271-273) are discretized (93) to yield, after partial

expansion and substitution of boundary conditions (274-276)t

de&M at O[ilio)+De N+l

dt I " i , l 0A( 0 't) 51Th4+2 + ¢jcA(xjt)) (279)

x 2i14+1

dc (t) -+-

A(14K)'(c (xift) a Kcc(xiet)) (280)
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dCc (t) 13+1
-a OD 8[,1icc(Ott) + z Bi jcc(xjit)I +

x. J=2

X(l+K) [cB(x£,t) - Xcc(Xiut)] (281)

The flux relation (277) is identical to the sirmple reversible charge

transfer case, and is discretized in precisely the same manner to

yield equations (249) and (250). The flux relation for species C is

equation (278), and is discretized as follows:

N+l

= AI.,l0C(0,t)+A±,N+2cc(lt)+ E A. ,c_(x.jt)
j=2 C,3

N+I

- A lcc(Ot) + E A- -c.(x'3,t) (282)

or
13+1

cC(O,t) - Z a c_(xit) (283)
j.2

where a. was defined by (253).

Fut.stitution of (249), (250) and (283) into (279), (280), and (281)

gives

dcA 11+1
- S + Z Z b. 4cA(x "t) (28.)3- t  J=2 ,JC J

dCB I j+ :
-,3  " T i  I. b 3, 3 ,t) - )(l+X) '1[cD(xi,t) -KcCxi,t)1 (285)

;B X i J=2 OB(Jt

dcc N+1 + [

at a -Z b3J. c-(ft) + )(l+K) [cB(xitt)-Kcc(xitt)) (28EIJ

As before, simultaneous solution of equations (284) - (286) provides.

4-



the time dependent concentration profiles. The chronopotentiometric

response for this mechanism is still given by equation (259) with the

term in parentheses being supplied by equations (249) and (250). The

concentration terms in (249) and (250) however, are nowy calculated

numerically from equations (284) - (286).

The elements of the Jacobian matrin are simply the derivatives of

equations (254-255) or (284-286) with respect to each xj. The matrix

elements of the Jacobian for the siimple reversible electron transfer

mechanism then are given by:

1 6 A dc !t)) for species A (287)

and

i 'a for species B (288)

These are given explicitly by:

6 Si +N+lS + I b- - t) (289)°i'j axi i J-2 J"',J A'  '

for species A, and

6 T +I£
jj a glT i Zbi:cl(xi't) (290)

for species B, or finally,

llB' A' + (291)
,, " j " Ai,1  i,

for both species.

U
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Similarily, the matrix elerents of the Jacobian for the ECrev

mechanism are given by:

i j = equation (291) (292)

for species A, and

ill 113B + 1 - AK(I+K)-.Ic (it 1Jt~ " :A.I, + tB- (293)
i~j A1  )K(+R cSB(xi t) 6ij(23

for species B, where 6 is the Kronecker delta, and

-B A -1
Bi,1,1 + B - K(l+X) cc(xirt)6ij (294i'j A Aill  BCJ'(9

for species C.

Listed below are the discretized equations for several other

com .nly occurring electrochemical mechanisms. As above, it is

assumed that the diffusion is to a planar electrode in quiet solution,

and species A is the only electroactive species present initially.

(C) Catalytic Mechanism

ne k

A B --- A + C (295)

- Si + $N2 b ijcB(xjet) - krcB (xit) (296)

dc~j N+l
'-txi  Ti + BE bi j c(xit) - kTcB(xjit) (297)

For the E-t profile, equation (231) is used along with equations

(249) and (250), the unknown concentration terms being furnished by

the simultaneous solution of the 2N equations (296) and (297).

(d) Dimerization

ne

A =w (28
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;B C (299)
k 1l

lie let

X - ([Alk I + k~l ru and (300)

K w Ak 1  (301)

Then

Zc b iJ + NJll (302)

x. J=2

dce T. + bt.1 (2 x, i 33
dt~~ x I + bl2JCB(xj't)-X(l+K) 1c~it )-Kc(xlt))(3)

dc C N+l - 2
d E b t C (x41t) + X(1+K)~ (c B(xipt) -KC (xi1t)) (304)
x. J=2 -

Once more, equations (231), (249), and (250) are used for the E-t

profiles. Note that in this case, 3N equations must be solved

because c B(Olt) depends on the concentration of the C species.

(e) Second Order Reaction

ne-
A B B + A C (305)

A and K are defined as in equations (300) and (301).

dCA -s+N+l
4 i -F i +0 1bi jcA(xj ,t)-A~, (clie+cK)~)

JW2 (4.X~~c~i.)

Kc No~t)) (306)

CI



N+ -1
F Ti + j2b ,jc (xjt) + ) (l+!:) (cA(::uit)cI3(xijt)

KcC (2:i, t) (307)

dc C
di Bbij c jit) + )X(l+X) (c (xi't)CB ("i't)Kcc(Xi t)) (308)

1X j 2

F. Cyclic Voltamrmetry - Planar Diffusion

ltieker and Speiser [7] have derived the discretized equations

necessary to simulate cyclic voltanmetric responses by orthogonal

collocation. They are presented in this section. The only dif-

ference in the mathematical treatment for this case and chronoamp-

erornetry is the statement of the surface concentrations of each species,

which of course must be modified to reflect the new potential program. It

should be noted that th, computer time expended in these cases is approx-

imately the same as Feldberg's finite difference approach.

(a) Discretization of Cyclic Voltarnetric Experiments [7]
ne-

1. Simple electron transfer A B

+ne

From the original boundary conditions and differential equations,

we have the following dimensionless equations:

"cA 6CA (309

6t

2
6 CB 6 CB (310- B- x(1

6t 6x

cA(xO) - 1, c(x,O) - 0 (311

CA(lpt) 1 f, C,(1#t) 0 0 (312



ScA  6cB6CA - - 6CB (313)
x=O x-O

CA (Ot) M (314)

CB(0,t) - 'A/B SA

with 6A/B - e):pinF/RT (E - E (315)

A/B A/B Estart"

SA(t) A )exp(-nFvt/RT) - exp(-at) t < t (316)

exp(at-2at A)  t T  t . 2tA (317)

t A  potential sweep switching time

a a nFv/RT (313)

dE
v a d, the scan rate (319)

E /B the formal potential of the A/B couple

E start a the starting potential of the scan

0 - D/aL2  (320)

The differential equations (309) and (310) are discretized by

the approximation (93) at the collocation points xj.

dcA N+2
S Z- Bi'jcA(xj't) (321)

dc 2 (322)

aa -Ii xi  E B'jcB(xj't) (322)

Expanding out the two boundary terms at x - 0 and x - 1, i.e. xi x .O

and Xi  XN+ 2 , we have

CA ca O N+1 33d -A i*lcA(0,t)+BiN+2CA(1,t) + BjcA(Xjt) (323)1tX j=2 i,
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dc. !0+E (324)

-t B l+2cr.'tj= D

Fulstitutin- the boundary conditions .3 and .4 yield

= B[i, IcA(Ot)+Bi,li+2+jD ,cA (x.,L)] (325)
It .i j=2

dcE g+
i - 0i, 1cB(Ot)+ B i,jc (x.,t)] (326)

j=2 iB

An explicit value for c.(O,t) and cC(Ot) ,a,, be derived exactly as was

done for previous equations by using, the boundary condition (313). She

inter..eC iate result

Z. A 1 *CG., 1r~(t

:1,+2+J=2 (-.Bj, t) - -[Al, lCB(0,t)

jil4 1

j2 Aj cB(xjt)] (327)

is now r.odified to include the tir'e dependence of potential and to

eliminate one of the unknowns cA(Ot) or cB(O,t) by the insertion of

the boundary condition (314).

The result is

CA(O(t) 02- /B S A ( 1 ,N+£ (328
cA(0,t)~ ~ - A,[e/B At) AI}+ Z AI jc.4(Xj8t)+cB~jt](2

and

c(Oft) A 1ie 1t A ,11+ 2 + I , lj[CA( t)+ B(xjt)] (329 ;

Insertion of these explicit values of cA(Ot) and cB(Ot) into (325)

and (326) yield the final set of t differential equations to be solved
s.irultdneously for the I values of CA((Xtt) and cB(Xilt) (at the

collocation points)t
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dc A B. i e (t) r N+I

af 'M ileA(/BS=t)) AN + EA 1  (c (2:jtt)+CBlxjit)]J

i,1+ 2+j= 2Bi, cAONt) (330)

- i A , [+eA/B (t)] A1,N+2+jI2,J [C0.tl+Cl t)

N+I "

l
+ I B.i  cB lcjlt) (331)

j=2

The concentration profiles are fully developed from the solution

of these equations.

The current is given by
6C Al X0 cAi -nA'D w-- nFA'la [AlA (332)

, X-0 dx 1=0

where A' is the electrode area.

The discretization of oc l= follows from

jxI 1 ,j cA (xi ,t) (333)
x 1=0 j=l JAX

Expansion of (333), insertion of the boundary conditions (312) and (314)

with insertion of the result back into (332) yields

nFA' 3S [AO) 1+l N+1
Sa 1+/S EA 4 A ,llJ+E A (xjAt)1  (t) Z A. .cD ,t)I (33,

[.1B AtJ)=2 JJ A "e/n j=2 'J ,(

Since we know the cA(Xet) and cB(xjet) from the solution of (330) and

(331), the current as a function of tire . imr.ediately found. Since

the real time T a at is related to the motential by

Z a EStart + VT TA T . 0 0 T S T (335)
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E start + v(2TA-T) TA 5 T S 2TA  (33C)

or dirensionless tire by

E - EStart + vat 0 S t S t (337)

E - EStart + va(2t -t) tA - t .2tA  (33G)

The spectroelectrochenical absorbance response A is given for each

species A and B for cyclic volta.-etry by the quadratures

N+2
Y V cA (331.)

N+2
AB (340)

i=l 1

where the Vi are given by the weight vector formula solved. In the

programs, the K are given at any tine t simply by using the cA(xit)

or cB(xit) in (339) or (340) respectively, that correspond to that

tine t.

2. Reversible electron transfer followed by irreversible first

order cher.ical reaction: -ne k

A - 0 C (UCI1 )

+ne

The dimensionless partial differential equation for species B is now

ac B  V C "¢8 -Ccc " " B  (341)

6t 63C

where

- k/a (3t2)
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By inspection of the equations for the reversible charge transfer

redian it is seen that only the equations describing the B species

need to be changed to fit the ECIP, case. The changes yield these new

equations for B:

dc N+3

t Ixi  S[Bi.lcB(Ot)+Bi, U+2cB(4) + I B J CB(xjt)l-dCB(xjt) (343)

dcE B, F N+l]
All~~eABS~t)]Ls + I2 & [c Nxjt)+cBx.I)_t x A 111+ /StY 1,+ =-, kjBAt

N+1
+J2 Jc(J - lit) (34)

The current is exactly the same in the forward direction as in the pre-

vious case since the kinetic terr2 does not affect the flux of species

A to the electrode. The spectroelectrochenical absorbance is also

identical for species A, but is changed for species D.

-n e

3. A B
+n e

B -- H+ + C kI (first or pseudo first order)

if+ + A -+ HA k2 (second order)

-n2e- (345)

+n2e

D --P 2H+ + C k3 (first or pseudo first order)

The results are given below for this corplicated r.echanisr. The

reader is referred to the original literature [73 for the details of

the derivation.
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dcA B e X (t)+1
A 3_ill A/BILt [A + I A [cAx.t)+C (x.it)lI

3t. A1, [1+ A/0001t) 11N+2 Jm2o'2 Ax

+B,2 + IBij x It *2 cA (x±it)cm+(xiVt) (346)

dc N+1 cAjt)cxj)]

+t +B jcAlut -N+ +lBx~t (3.47) xt x

dcB.N+11+

+ IBij (x., t)+c c (x , t) (3487)

dcx.!11 N+l N+1

A~ __ A 1 , jcu(xit)+ I B ij jcH4(Xj t)]

+ a c ) a x t (348)

dcH,. Bt l +2s,(t
Xj 0- Al~~+~/S(~ A ~ jIJcHA+(xjet)+ D(X)DtHflXit)

+ a 1c (ift H a3 + (x' -2 cA(xi,t)c+ (x. t (35S)

%tD - __I A________/ X___ J.

+F Z B JH. ( 1t E1 2 A 1 'tC.+Xi

14+1iBN+

+ Z. B~~ c -xft a cOcxiet) (351)

In the above equationce
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I1 w kl/a (352)

a2 w k2[A*]/a (353)

03 w k3/a (354)

0JIA+/D U exp [n./RT(E+/ - Estart, ]  (355)

The current is given by

dc A  rice^
i FA Da [A ] [nI  +n -Xd + (35f)

i X- 2 ox xO

or I nI  11+1

U FA DIaA ° l+e/SR(t) [Al,N+2 + I Al,jCA(xjot 1.
A/BSAJ=2

N+l n2 11+1
eA/BVA(t) I A B(xjt)] + [ Z Al'jc RA+(xjt)J=2/Ij2 cB +HA+/DS At) j=2

N+l
-eHA+/DSX(t) EAljc(xlt)I (357)

(b) Optimization of the Dimensionless Parameter

The dimensionless parameter B that is introduced into the col-

location equations must be chosen such that (a) it is not so low as

to distort the simulations, and (b) it is not so high as to cause

oscillation at a collocation point. Since the parameter B is a function

of the dimensionless rate constant, simply choosing a fixed value will

not give the best results for all possible values of rate constants.

Speiser 1181 has recognized this fact and has developed an analysis

of the problem based on stability criterion for the particular integration

lop|
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nethod used. Pn optimal value of B then is calculated in the prograr.

itself.

A numerical integration is "stable" if the difference between the

true and arproxirate solution decreases, while the condition

< 0 (358)6dv

wvhere

f(x,y) - .L (350)

holds.

If we are referring to a syster, of N ordinary differential equations,

then y, f(x,y), and f(x,y) represent column vectors with 1; components.dy

For e::ample, in the ECI.1 mechanism, the components of the vector

(c (xt) (360)
c (Xt)

are the partial differentials of equation (330) and (344) and are

B i , 1A/ SI (t)I

(!c ( On,,t) Al ,[l+eA/BEX(t)j - A lei+B i~i i -a 2 , .. N+l (361) i

a t )
6€ (::it) (-"______

TE73lGAB S) ) B A B 1 + i-2, ...N+l (362)A ,'l[l+6A/BSX(tH le ,iii'"

It is noted that for the values of the A i j and Bi tj found in

program DFOPR (see Appendix), the expressions (362) and (363) are

always negative, and hence always stable.

For the Hammings predictor-corrector method, such as that found

in IBM's SSP library, Speiser points out that a particular stability

criterion for our problers is

I

. . . . . . ..F . V " . .
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0.65 (363)

6c (xi, t)

where h is the integration interval step.

(361) and (362) may then be combined with (363) to develop values

for B for which the integration of the differential eouation using the

Eam rings predictor corrector method is stable.

The results are

0.65IB . 1 A/B S (t M '

,Il +e A/B Alt)] Al,i+Bi,ii=1 *+1(6)

0.65-ha

h lll "'1S001Al,i+Bi,il i-2, ...N+1 (365)A - A,1[1+e A/BS ()]'"

The results for the complicated mechanism (345) are found similarly,

and are found to be:

OW 0.65 - ha2CH+(xi,t)

h - BAiI[OA/BS t) ] A +B ~ , i-f2, ...11+1

0.65 - h 1

Bh A-ill [+6 A/B S AM ) ] ,i+B ili ' i '2 ""N

0.65

B

h A 1 A B,i 1-# , ..

0.65-hz 3

h- A + , i-2, ...N+
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0.65

-~B e t)(I
A .- 1 Al jl+AHA+ DSX lt) ] ,+ii'"

0. 6 5-ho2 cA (x i t)

h - AI, Ai+B~ 1, 2 ,e+ (366

Thus using the inequalities defined in (365) and (365), and in

(36() one may optimize B such that the integrations approach the highest

possible accuracy without going into oscillation. Speiser notes that

negative values of B cannot be used since the current is proportional

to 1/2 , so negative values of 6 must be eliminated for a given set

of kinetic paraieters by decreasing h until B becomes positive.

• • ~ u~ nnwra, • m. n~m wnu • na• • i, Imu~u"4
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APPEnDIX

tubroutine JCOBI: Calculates roots and derivatives of a polynomial.

Usage: CALL JCOBI (ND, N, NO, Nl, AL"A, BETA, DIFI, DI2, DIF3, ROOT)

Input paraneters:

Integer ND: The dimension of vectors Dir1, DIF2, DIF3, and fOOT.
These vectors should be dimensioned in a DIPIENSION

statement in the calling program. ND should be at
least as large as the total number of interpolation
points.

Integer N: The degree of the Jacobi polynomial (i.e. the number of
interior interpolation points).

Integer NO: Control index. If Nl-l, x-O is used as a collocation
point; if NO=O, x=O is not used.

Integer Nl: Control index. If N1-l, x-l is used as a collocation
point; if NI-O, x-l is not used. Normally, boc.u iC a na
N1 are set to 1.

Real ALFA,
BETA: Determines the syrnetry of polynomial chosen. (See

eauation (75 )). The Legendre polynomials described
herein have ALrA-BETA-O for linear diffusion problems.

Output parameters:

Real Array
Root: One dimensional vector containing on exit of the sub-

routine the N+N0+Nl roots or zeros of the chosen
polynomial.

Real Array
DIrI, DIF2,
and DIF3: Three one dimensional arrays containinC on exit from

JCOBI the first, second, and third derivatives of the
polynomials at the roots of the polynomial.

Please note that in order to retain Villaden's original progran, ALFA
and BETA are used here for y and 6 in the text (equation (75)).



1 SUBROUTINE ,C0IND.N.NO.Ni.AL.BE.DIFI.DIF2.03IF3.UtOOT)
2 IMPLICIT *CAL*$(&-H.O-Z)
3 DIMENSION 01F1(N0 .9IF2(N0 .DIF3(N).DoT(ND)
4 AB*AL*BE
s A0.31-AL
6 AP*BE*AL
7 0I~l(l)G(AO/(A9*2).1)/2

S DIF2(1)o0.
* IF(N.LT.2)GO TO 15

10 DO 10 142.N

12 ZeAS42*Zi
13 DIF1(I)*(A9*AD/Z/(Z+2).1)/2
14 IF(1.t41.2)GO TO 11
Is 01F2(1)*(A$*AP#Zl)/Z/Z/(Z*I)
16 Go TO 10
17 11 Z'Z
Is Y*Zio(AB*Zi)
19 YaY*(AP*Y)
20 DIF2(1)RY/Z/(Z-1)
21 10 CONTINUE
22 Is XRO.
23 0O 20 181.14
24 25 XON0.
25 XNal.
26 YOIN0.
27 XNI&O.
28 DO 30 Jiu1.N
29 XPs(DIFI(,.)-X)XN-DIF2(J)*X
30 XP1.(DIFI(J)-X)'XNI-01IF2(J)'X01-XN
3V Niel
32 10-XN
33 X01uXNI
34 XNsXP
35 30 XNlwXPl
36 ZCal.
37 ZOXN/XNI
38 IF(I.EQ.1)OO TO 21
39 DO 22 ,jn2,1
40 22 ZCGZC-Z/(X-UOOT(,J-1))
41 21 Z*Z/ZC
42 Xex-Z
43 IF(OAS(Z).O.1.0-09)0O TO 25
44 ROOT(I)*X
45 KSX+.O01
46 20 CONTINUE
4'1 NY*N*NO+Ni
48 IF(NO.1Q.0)GO TO 25
49 00 31 1l1,N

51 31 ROOY(J*I.)*Rooy.j)
52 ROOT(1)u0
13 35 IF(N1.fO.l)%OOT(Nr)*j.
54 00 40 Iv1.NT
15 XmROOT(I)
66 DIF I(I )a I.
07 01F2(I)80.

13 01F3(1 )BO.
19 00 40 -Iul,NTIAx
60 IF(J.1@.1)00 TO 40

61 vex-ROOT(,j)

62 oir3(I)GY*DIf3(I)4200IF2(I)
63 01F2(I)*Y9DIF2(I).20IF(II

64 IIIa'I )
65 40 CONTINUE

66 RETURN
67 IND



Subroutine DOP'M Calculates the Aij, Bij, and Qi interpolation and

quadrature weights.

Usage: CALL DFOPR (ND, N, NO, Ni, IID, DIF1, DIF2, DIF3, ROOT)

Input parameters:

Integer ND,
NI, NO, Nli: Same as in JCOBI

Integer I: Index of the root at which Aj, Bij, or Qi is being
evaluated.

Integer ID: Control index. ID-i causes calculation of Ai;j ID=2
is for the Bij; ID-3 is for the 0i •

Real Array
ROOT, DIFI,
DIF2, DIF3: The vectors calculated in JCOBI.

Output parameters:

Real Array
VEC: The vector containing the Aij, Bij, or Qi at the given

root upon exit.

II

( 4

m ~ m m m w m m ~ m 2



I SUBROUTINE DFOPR(ND.N.NO.NI.I.IDDlF1.01F2.DIF3.ROOT.VECT)
2 IMPLICIT REALOS(A-H.O-Z)
2 DIMENSION OIFI(ND).01F2(NO).DIF3(ND).ROOT(ND).VECT(ND)
4 NTsN*N0.Ni
5 IF(IO.EQ.3)GO TO 10
6 DO 20 julNT
7 IF(U.NE.Z)OO TO 21
a IF(ID.NE.I)GO TO 5
9 VECT(I)*DIF2(1)/DIFI(I)/2
10 G 0TO20
11 5 VECT(l)-DIF3(1)/DIFI(I)/3
12 00 TO20
13 21 Y-ROOT(l)-ROOT(J)
14 VEC7(1J)mOIFl(I)/OIFl(.I)/Y

16 20 CONTINUE
17 00OTO 50
Is 10 Vm..
19 DO 25 JmI.NT
20 XwROOT(aI)
21 AXBXO(i-X)
22 IF(NO EO.O)AXoAX/X/X
23 IF(Ni.EO.O)AX*AX/fl-X)/(l-X)
24 VECT(J.)AX/IF(J)2
25 25 VDY*VECT(J)
26 CoD 60 ,Ju1.NT
27 60 VECT(J)OVECT(,J)/Y
28 so RETURN
29 END



Usae: M.LETIF3 11,NDNPRM, WNDFU11, OUT, XO, X1, HO, EPS,

' 9 is a n e n l y u e n e e e t r a d so l or di e oed sst
suc inthecall.4ng progran with dirvension ND. The following are real

apeatrs if aien 11DtNA satnthudas b iesoe in the calling porm

Input parameters:

Integer N: Number of equations to be integrated.

Integer ND: As in JCOBI - main program array dimension.

Integer
U4PRINT: Printing interval. The solution is printed at every

NPRINT step. The solution is always printed at Xl.

Real XO,
db"11:The limits of time over which the differential equa-

tions are integrated.

Real HO: Suggested initial half-steplength for integration. On
exit, Ho contains suggested value for half-steplength
for continued integration beyond Xl.

Real Vector
17 and real
rPS: These parameters dete-ine subseq~uen~t steplengths for

integrations. They ; part of the autoratic step size
selection part of the program. Suggested values are
given in the examples. Further information is given in
the original literature.

Real Vector
Y. Vector of concentration solutions at the collocation

points. initially, these are specified as the be 2ndary
conditionas (t0O) for each species.

STIFF3 also uses three internal subroutines, SIRK3, LU and BACK. The
listings for ttive are included.



I SUBROUTINE S1RK3(N.NO.fUN.IPIV.F.Y.YKi.VK2.YK3.0F.H)
2 IMPLICIT REAL*S(A-H.D-2)
3 DIMENSION F(ND).Y(NO),YKi(ND).YK2(ND),YK3(ND).IPIV(ND).DF(ND.ND)
4 DIMENSION R(4)

5 DATA £.R/.435S665215084589DO. I.03760949613185900. .834930483552637
6 1700.- .630202086724452300,- .242337S9t2600452/
7 DO 5 lI&I.
a DO 6 Joi.N
9 DF(I,,J)-"*A*DF(I.J)
10 IF(OAGS(DF(I.,J)).LT.1.D-12)F(I.,J)m0.
11 6 CONTINUE
12 5 DF(I.J)&DF(1.1)4l.
13 CALL LU(ND.N.IPIV.DF)
14 CALL BACK(NDN.IPIV.DF.F)
Is DO 3 Iul.N
16 YKI(I)aHOF(I)
17 a YK2(I)wY(l)+.75D0*YK4'I)
Is CALL FUN(Y0C2.F)
19 CALL SACK(ND.NIPIV.DF.F)
20 00 9 Iul.N
21 YK2(1)aUHF(I)
22 V(I )aY(I).R(1)'YKi(I)4R(2)-YK2(I)
23 9 YK2(1)mR(3)*YKM()4R(4)'YK2(l)
24 CALL BACK(NO.N.IPIV.DFiVK2)
25 DO 10 IliN
26 10 Y(I)nY(I)+YX2(I)
27 RETURN
26 ENO



I SUBROUTINE STIFF3(N.NO.NPRINT.FUN.DFUN.OJT.XO.X1.NO. IPS.V,.YOLO.
2 1YOLDI.IP.YA.E&i.VK2.YK3.DF.OFOLD.F.FOLO)
2 IMPLICIT *EAL*S(A-H.O-Z)
4 DIMENSION IP(ND).V(ND).VOLO(NtD).YOLDI(ND).YA(ND).YK1(N).K2(NJD)
5 DIMENSION VK3(ND).W(ND).F(ND).FOLO(NO).OF(ND.N).FOLD(ND.JD)
6 ICON'0
7 NOUT&O
I XmX0
9 049HO
10 If(X0 4 2.*H .T.X1)GO TO I
11 2 1Wm(XI-X)/2
12 ICON&I

Q3 I IF (ICON EO. 0 .AND. Y*4Q GOT. XI)H*(XI-X)/4
14 CALL FUNCY.F)
Is CALL DFUN(Y.DF)
Is 1lAu -1
17 DO 30 Iwl.N
Is VOLD(I)BY(I)
19 FOLD(I)OF(I)
20 DO 30 Ju.,N
21 30 DFOLD(I,,J)-DF(I.I)
22 37 CALL SIRK3(N.ND.FUN.ip.r.Y.VKI.YK2.YK3.DF.2*H)
23 D0 35 ImS.N
24 YA(I)-Y(I)
25 Y(I)wYOLD(l)
26 F(I)-FOLD(I)
27 DO 35 Jml.N
28 35 DF(I.OJ)DFOLO(IMJ
29 38 IHA*IHA*1
30 CALL SIRK3(N.ND.FUN.IP.F.Y.YK1,YK2.YK3.F14)
31 CALL FUN(Y.F)
32 CALL DFUN(Y.DF)
33 00 40 ImI.N
34 40 YOLOI(Oil.I)
35 CALL SIRK3(N.ND.FUNIP.F.Y.YK1.YK2.YK3.DF.H)
36 fo.
37 DO 41 ImI.N
so ESSW(I)'DASS(YA(I)-Y(I))/(1.4DAUS(Y(I)))
39 IF(ES .GT. E)EsES
40 41 CONTINUE
41 CREW/S
42 QAuf4.*0),*.2S
43 IF(O ALE. 1.) 00 TO 48
44 DO 45 lIwIN
45 YA(I)uYOLDM()
46 F(I)*VOLD(I)
47 Y(IIUYOLD(I)
48 00 4S JwI..N
49 45 OFOMWJsDOLOI.
so 149H1/2
ol ICONnO
12 00 TO38
13 43 00 49 lI&IN
54 49 V(R)*Y(I)*(Y(I)-VA(l))/7.DO
51 X@X*20H
so @A.1./(OA4.0-iO)
$7 MFOA .0T. 3.)00u3.
Is H'oA*H
It NOUTeNOIJT*I
s0 IF((w~OUT/PRtINT)oNPRINT .90. NOUT OR5. ICON .90. I)CALL OI(X,Y .1
61 114A, A
62 IMICON .90. 1) 00 T0 137
63 Hot
64 IF(A*2.*H AT.* X0) 00 TO I
65 Go0T02
66 107 RETURN
67 END



I SUBROUTINE LU(ND.N.IPIV.A)
2 IMPLICIT REALS(A-4.O-Z)
3 DIMENSION IPIV(ND).A(ND.NO)
4 IPIV(N)vN
5 NlwN-1
6 00 10 Ivl.Nl
7 XvA(I.I)

S 1F(X.LT.0.)X--X
9 IPIV(I)6I

10 1181+1
11 00 11 Jm11,N
12 V-A(.1.)
13 IF(Y.LY.0.)YUYV
14 IF(Y.LE.X)GO TO 11
Is xeY

16 IPIV(I)
17 11 CONTINUE

Is IF(IPIVII).EQ.1)00 TO 14
19 KwIPIV(1)
20 DO 12 JwI.N
21 XvA(1.qJ)
22 A(I.JI)DA(K.aJ)
23 12 A(K.,i)wX
24 14 DO 10 JwIl.N
25 Xe-A(tJ.1)/A(I.1)
26 A(J.I)wX
27 Do 10 keahN
28 10 A(J.K)OA(J.K)*X*A(I.K)
29 RETURN
30 END



1 SUBROUTINE BACK(ND.N.IPIV.A.V)
2 IM4PLICIT REALSO(A-H.O-Z)
3 DIMENSION IPIV(NO).A(ND.ND).V(ND)
4 NIwN-I
5 0O 10 IvI.NI
6 liaI*1
7 KmIPIV(1)
a IF(K.EO.I)GO TO II
9 XwV(I)
10 V(I)uV(x)
II V(K)zX
12 11 DO 10 wImI.N
13 10 V(%I)uV(J)*A(J.I)*V(I)
14 V(N)*V(N)/A(N.N)
is5 DO IS II*2.N
16 IwN41-II
17 IiwI*S
Is DO 16 JwI'.N
19 16 V(I)DV(I)-A(I.J)*V(J)
20 15 V(I)NV(I)/A(I.I)
21 RETURN
22 END
23 C
24 C



Subroutine FUN (Y,F): User supplied subprogram for defining the dif-
ferential equations. F is the vector of the right
hand side of the differential equations. (See
examples.)

Subroutine DUIJ (Y, DF): User supplied subroutine for evaluation of the
Jacobian of the differential equations. DF is the
Jacobian matrix with elements DF (I,J)=F(i)/Y(J).
(See examples.)

Subroutine OUT (X, Y, IH, Q): User supplied subprogram for output.
X: Current value of tine.
Y: Current value of concentration vector at each

collocation point.
XH: Number of bisections (unsuccessful integrations)

in the current integration step.
Q: Steplength acceleration factor.

STIFF3 also uses three internal subroutines: SIRK3, LU, and BACK. No
extra programming allowances need be made for their use.

The first set of listings following are MAIN, FUN, OUT, and DFUN for
the catalytic mechanism including ipectrochemical absorbances as de-
scribed in Section E, example Se. The second set of listings are for
spherical synmetr; simple electron transfer including the current cal-
culation as descri..ed in Section E, example 4a.

,mw



I C
2 C
3 C
4 C
5 C *' PROGRAM To SIMULATE THE STANDARD CATALYTIC MECHANISM
6 C ' THE CONCENTRATION PROFILES. CURRENT. AND
7 C * SPECTROELECTROCHEMICAL ABSORBANCES ARE GIVEN ON OUTPUT.
a C
9 C
10 C
11 IMPLICIT REAL*S(A-H.O-Z)
12 DIMENSION DIFI(30).IF2(30).DIF3(20).VECT(30).F(30).FOLD(30)

13 DIMENSION YOLDt(30),YA(30).YKI(30).YK2(30),YK2(30)
14 DIMENSION DF(30.30).OFOLD(30.30).W(30).Y(30),YOLD(30)
15 DIMENSION YY(30).YYY(30)
Is COMMON AAA(30.30).BBB(30,30).ROOT(0).WK(30) ,MANUAL
17 EXTERNAL FUN.OUT.DFUN
Is C * SET NUMBER OF SPLINES
19 O0 1000 MANUAL* 1.10
20 C e GIVE ORDER Of POLYNOMIAL DESIRED
21 N-.
22 C STIPULATE WHETHER 0 AND I ARE TO BE USED AS INTERPOLATION POINTS
23 NO -l
:4 Niel

25 C * ENTER ALPHA AND BETA DETERMINING POLYNOMIAL TYPE
26 C e (WE USE LEGENDRE HERE)
27 ALsO.
28 BE*O.
29 C * ENTER PROGRAM DIMENSION
30 NO-30
21 C '* CALCULATE ROOTS OF SPECIFIED POLYNOMIAL(COLLOCATION POINTS)
32 CALL qCOBI(ND.N.NO.N1.AL.BE.0IFIDIF2.DIF3.ROOT)
33 WRITE(6.2)(ROOT(I).IwiS)
34 2 FORMAT(4F15.12)
35 C *' CALCULATE A MATRIX DESCRETIZATION COEFFICIENTS
36 DO 4 Im1.8
37 CALL DFOPR(ND.N.NO.NII.I.,DIFI.DIF2.DIF3.ROOT.VECT)
38 00 4 jal.
39 4 AAA(I.J)*VECT(J)
40 C o CALCULATE 8 MATRIX DESCRETIZATION COEFFICIENTS
41 00 S lal.
42 CALL DFOPR(NDoN,NO.N1.I,2.DIFI.DIF2.°IF3,ROOT.VCT)
43 00 5 dm1.5
44 5 BBB(I.J)-VECT(j)
45 C 00 CALCULATE QUADRATURE INTEGRATION WEIGHT COEFFICIENTS
46 00 791 lei.@
47 CALL DFOPR(NO.N.NONI,I,3,DIFI.DIF2,DIF3.ROOT.VECT)
48 WK(I)-VECT(I)
49 791 CONTINUE
so C * ENTER TIME LIMITS BETWEEN WHICH INTEGRATION IS TO BE PERFORMED
51 XO-O.DO
52 X82O.DO
53 C * NTER INTEGRATION ERROR TOLERANCE
54 EPSOI.D-06
55 C *u ENTER INITIAL CONDITIONS FOR ALL SPECIES
56 DO 300 leim
57 Y(I)ul.DO
so V(I*G)uO.DO
59 C * SET WEIGHT FACTORS FOR ANSWERS
go W(I0S)81.O

61 300 W(I}Sl.D0
62 C 00 SET INITIAL VALUE FOR INTEGRATION INTERVAL STEP
63 HO'1.D-06
64 C 00 BEGIN INTEGRATION
65 CALL STIFF3(12.30.I0.FUN.DFUN.OUTXO.XI.HO.EPS.WY.YOLD. VOLDIAIP.
66 IYA.YKI.YK2.YK3.DF.DFOLD.rFOLD)
97 1000 CONTINUE
55 STOP
63 IND



I SUBROUTINE FUN(Y.P)
2 IMPLICIT REAL'S(k-H.O-Z)
3 DIMENSION Y(16).F(16)
4 COMMON AA(30.3O).B530.30).ROO(30).VK(30) .MANUAL
5 TRoMANUAL
6 C SSET UP SPLINE POINT MUL IPLIER
7 VARm(1.DO/((.lDOTR)**2))
* C *'STATE THE DESCRETIZED DIFFERENTIAL EOQUATIONS

9 DO 350 le.$
10 TDDEPI*O.
11 TODER2mO.
12 DO 351 J'1.6
10 IDDERIsTODERi.VAR(IB(11.J4 )eY(J))
14 TODER2mTDOER24VAR(BB(41*4)y,j,))
is 351 CONTINUE

17 F(1.6)uTODER2.VAR'g3(14s9l)-Y(14g)
Is 350 CONTINUE
19 RETURN
20 END
21 C
22 C



I SUBROUTINE OUT(X.Y.IH.0)
2 IMPLICIT REALSI(A-HO-Z)
2 DIMENSION YY(30).YYY(30)
4 COMMON AA(30.30),BB(30.30).ROO(30),WK(30) MNANUAL
5 DIMENSION Y(30)

7 130 FORMAT( TIME wl,f20.l5./,4X.1O.O00OOOOOO0 '. 3(Fl6.11.1X)./.lX,2
a ItFIG, II.1x).Ix.'1.00oOOOO0o0o'.//.4X.'1.Oooooooooo'.(FI;.11.1X).
9 2/,1X.3(Ft6.11.1X).3X.'0.00000000000')
10 C 'CALCULATE THE ABSORBANCES FROM THE NOW KNOWN CONCENTRATION
ii C **AT THE COLLOCATION POINTS (Y). AND THE INTEGRATION
12 C *eCOEFFICIENTS (WK).
13 GAUSSAwO.D0
14 GAUSSB'O0D
Is YY(1)0O.DO
is YY(S)ml.Do
17 Yv(1)81.0
is YYY(S)80.0
19 DO 792 1.1.6
20 YV(I1)*Y(I)
21 VYY(li.)eY(I*6)
22 792 CONTINUE
23 DO 793 lolS6
24 GAUSSAuGAUSSA+WK( I )*Y( I)
25 GAUSSS'6AUSSB*WK( I )YYY( I)
26 793 CONTINUE
27 GAUSSAmGAUSSA i .D-6 . IDO*MANUAL 1 .D-3' .5
28 GAUSS3'OAUSSS 1 .O-66. 10MANUAL' 1.0-3**.5
29 WRITE(S.794 )GAUSSA.GAUSSS
20 794 FORMAT(' ASSONSANCE A o'.f20.iS.t ABSORBANCE 5 e'.E20.15.//)
31 ETURN
22 END



I SUSROUTINE OFUN(Y-0P)

2IMPLICIT REALSB(A41.O2)
2 01IENSION OF(0 ,0)

3 C W 0 (S , ), G( 3. O) .R00 30).WK (3) .ANU &d.

6 TR*NANUAL
* VAR,1.Do/(tlJDO*i)2)

Oo go tu1.6
S 000 t)-.6

10 FIJ6*A3(1JI
11 00 CONTINUE

12 002365 M-1.6

13 DF(M+6,0+6)DFN6.G 
.

14 $65 CONTINUE
Is RETURN

16 END
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